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Abstract. Faddeev and Niemi have proposed a decomposition of SU(N) Yang–Mills theory in terms of
new variables, appropriate for describing the theory in the infrared limit. We extend this method to
SO(2N) Yang–Mills theory. We find that the SO(2N) connection decomposes according to irreducible
representations of SO(N). The low-energy limit of the decomposed theory is expected to describe soliton-
like configurations with nontrivial topological numbers. How the method of decomposition generalizes for
SO(2N + 1) Yang–Mills theory is also discussed.

The mechanism of color confinement in Yang–Mills the-
ory is known to be one of most difficult problems in the-
oretical physics. A qualitative explanation of this prob-
lem is provided by monopole condensation, which causes
the confinement of color through the dual Meissner ef-
fect [1,2]. It is conjectured that an Abelian projection of
the Yang–Mills theory to its maximal Abelian subgroup is
responsible for the dynamics of the dual Meissner effect.
That is to say, in the infrared limit the degrees of free-
dom of a non-Abelian theory are dominated by those of
its maximal Abelian subgroup [2]. However, a quantitative
understanding on how the monopole condenses in the low-
energy limit, starting from the fundamental Yang–Mills
theory, is still absent and awaits to be further explored.

Recently, Faddeev and Niemi have proposed an
Abelian decomposition of the four-dimensional SU(2)
Yang–Mills connection Aa

µ [3]. The decomposed theory,
which is appropriate for describing the Yang–Mills theory
in its infrared limit, involves an Abelian gauge field Cµ, a
complex scalar field φ = ρ+iσ, and a three component unit
vector field na. It is an on-shell decomposition because
the variations of the decomposed theory with respect to
the fields (Cµ, φ, n

a) reproduce the equations of motion of
the original SU(2) Yang–Mills theory. It is shown, on the
one hand, that if the fields (Cµ, φ) are properly integrated
out, the resulting theory supports a string-like knotted
solution, which describes at large distance the dynamics
of extended, massive knot-like solitons [4]. These solitonic
configurations can be regarded as the natural candidates
for describing glueballs. On the other hand, if the vector
field na is averaged over first, the multiplet (Cµ, φ) trans-
forms as the fields in the Abelian Higgs model.

The method of an Abelian decomposition based on
SU(2) Yang–Mills theory is readily generalized to the gen-
eral case of four-dimensional SU(N) Yang–Mills theory [5,
6]. It is found that the SU(N) connection decomposes ac-
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cording to irreducible representations of SO(N − 1) and
that the low-energy limit of the decomposed theory may
describe stable, soliton-like configurations with nontrivial
topological numbers [6]. The first principle derivation on
the effective action that describes the Yang–Mills theories
in the infrared limit can be found in [7–9].

In this letter, we extend the Abelian decomposition of
the four-dimensional SU(N) Yang–Mills connection to the
case of SO(2N) gauge theory. We shall construct the N
mutually orthogonal Lie-algebra valued vector fields mi

with unit length so that they describe 2N(N − 1) in-
dependent variables. Then we use the fields mi to con-
struct several special SO(2N) covariant one-forms, that
are orthogonal to mi and determine a basis of roots in
SO(2N). Consequently, the combination of the fields mi

and the covariant one-forms constructed from mi yields a
complete set of basis states for the SO(2N) Lie algebra.
All together, they will be used to decompose the generic
SO(2N) connections. In the concluding part of this letter,
we discuss the generalization of the Abelian decomposition
for SO(2N + 1) Yang–Mills theory. It is straightforward,
provided the decomposition of SO(2N) theory has been
established.

The SO(2N) Lie group is rank N and its Lie alge-
bra has N(2N − 1) generators. We denote them by Ta,b

with the antisymmetric property, i.e., Ta,b = −Tb,a for
a, b = 1 to 2N . The generators are chosen in the defining
representation as follows:

[Ta,b]c,d = − i√
2
(δacδbd − δbcδad) . (1)

Here, we have normalized the generators such that Tr(Ta,b

Tc,d) = δacδbd −δadδbc. The commutation relations among
the generators (1) are easily obtained:

[Ta,b, Tc,d] =
i√
2
(δacTb,d + δbdTa,c − δadTb,c + δbcTa,d) .

(2)
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This is the form for the rotational generators in a 2N -
dimensional real vector space.

We designate the basis of the commuting generators in
the Cartan subalgebra

H2i−1,2i = T2i−1,2i, (3)

where i = 1 to N . Note that [H2i−1,2i, H2j−1,2j ] = 0. In
terms of the generators Ta,b, a generic Lie-algebra element
v has the expansion

v =
1
2
va,bTa,b

The factor of one half is needed to avoid double counting
in the contraction summation.

Following [6], we now conjugate the elements of the
Cartan subalgebra H2i−1,2i (3) by a generic element g ∈
SO(2N). This gives N Lie-algebra valued vector fields.
They are

mi = gH2i−1,2ig
−1 =

1
2
ma,b

i Ta,b. (4)

Note that the fields mi remain invariant if g transforms
by a right diagonal factor g → gh, with h belonging to
the maximal Abelian subgroup of SO(2N). In this way,
mi produce an over-determined set of coordinates on the
orbit SO(2N)/U(1)N and depend on only 2N(N − 1) in-
dependent variables. In addition, they are orthonormal:

(mi,mj) ≡ Tr (mimj) =
1
2
ma,b

i ma,b
j = δij . (5)

Using (4), it is straightforward to verify that

[mi,mj ] = 0, (6)
Tr (midmj) = (mi,dmj) = 0, (7)

where

dmj = ∂µmjdxµ.

Next, we proceed to consider an arbitrary Lie-algebra
element v under an infinitesimal adjoint action on the
fields mi. We define this action by

δiv = [v,mi] . (8)

Applying the action δi twice and summing over the index
i, we obtain a projection operator to a subspace which is
orthogonal to the maximal torus and is spanned by the
Lie-algebra valued fields mi,

(δi)2v = v − mi(mi, v). (9)

Note that the subspace in which (9) projects corresponds
to the space SO(2N)/U(1)N , i.e., the roots of SO(2N).
To derive (9), we make use of (2), (5), and this equation:

∑
i

[[ṽ, H2i−1,2i] , H2i−1,2i] = ṽ − ṽ2i−1,2iH2i−1,2i,

where ṽ = g−1vg.
Having presented the basic formulas needed, we hope

to generalize the method of Abelian decomposition for
SO(2N) Yang–Mills theory. Introducing the matrix no-
tation for the SO(2N) connection one-form

A = Aµdxµ =
1
2
Aa,b

µ Ta,bdxµ, (10)

we parameterize this connection one-form A to obtain the
following expression:

A = Cimi +
1
i
[dmi,mi] + (covariant part). (11)

The combination of the first two terms on the right-hand-
side of (11) is the so-called Cho connection, which was
first introduced as a consistent truncation of the full four-
dimensional connection [10]. It can be shown that, under
N independent gauge transformations generated by the
Lie-algebra elements αimi, the Cho connection retains the
full non-Abelian gauge degrees of freedom, while the one-
forms Ci transform as U(1) connections, Ci → Ci + dαi.
Hence, the remaining part on the right-hand side of (11)
(covariant part) must transform covariantly under gauge
transformations and by construction must be orthogonal
to the fields mi.

Because the decomposition method introduced by Fad-
deev and Niemi is on-shell complete, the number of field
multiplets that appear in the decomposed connection (11)
has to be equal to that of physically relevant field degrees
of freedom carried by the original SO(2N) connection. It is
known that the SO(2N) Yang–Mills connection (10) con-
tains 2N(2N − 1) physical components. On the contrary,
the Cho connection in (11) introduces N U(1) connec-
tions Ci and N vector fields mi. The former contributes
2N physical degrees of freedom, while the latter describes
2N(N − 1) independent variables. Adding both contribu-
tions gives 2N2. As a result, the difference in degrees of
freedom between both connections is

2N(2N − 1)− 2N2 = 2N(N − 1). (12)

This is the number of independent variables held exactly
by the (covariant part) of (11). So, the space of what we
called (covariant part) is 2N(N − 1)-dimensional. More-
over, according to the definition the fields appearing in the
(covariant part) of (11) are orthogonal to the fieldsmi. We
thus deduce that the space of the (covariant part) coin-
cides with the subspace to which the operator (9) projects,
the orbit SO(2N)/U(1)N .

In the following paragraphs, we shall use the fields mi

to construct certain special Lie-algebra valued one-forms
which determine the local basis of the (covariant part)
space. What are these Lie-algebra valued one-forms? They
can be gotten by repeatedly using the adjoint action (8).
For instance, we first learn from (7) that the Lie-algebra
valued one-forms dmi are orthogonal to mk. Let us de-
note dmi by iXi for the purpose of later convenience and
identify the one-forms Xi as one subset of the basis states
of the (covariant part) space. Next, we apply the adjoint
action (8) on Xi to obtain other one-forms Zij ,
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Zij ≡ δjXi = [Xi,mj ] . (13)

It is not difficult to see that, by utilizing (6), the one-forms
Zij are orthogonal to mk, too. Hence, the one-forms Zij

can also be used to parameterize the basis of the (covari-
ant part) space. Consequently, we continue to find the
remaining one-forms that span the (covariant part) space
by recurrently applying the adjoint action (8) on the lat-
est generated one-forms. After a little manipulation, we
have

δkZij =
1
2
δij

[
1
2
(δik + δjk)Xk + Vik + Vjk

]

+ δikVkj + δjkVki, (14)

δkVij =
1
2
δikZkj − δjkUki, (15)

δkUij =
1
4
δij

[
1
2
(δik + δjk)Xk + Vik + Vjk

]

− 1
2
(δikVjk + δjkVik) . (16)

It turns out that we get four subsets of Lie-algebra valued
one-forms (Xi, Zij , Vij , Uij) in total, which form a closed
algebra under the adjoint action (8). The details of these
one-forms are separately given in the appendix.

The one-forms (Xi, Zij , Vij , Uij) possess definite prop-
erties under SO(N) symmetries, for N specifies the rank
of SO(2N). See the appendix for details. For example, the
one-forms Xi yield the SO(N) vector representation, Vij

the SO(N) rank-two tensor representation, and Zij and
Uij the SO(N) symmetric tensor representations. How-
ever, not all of the components in the one-forms Vij and
Uij are independent. It is shown in the appendix that the
rank-two tensor Vij satisfies two sets of constraints:

∑
i

Vij =
1
2
Xj ,

and

Vii = 0

(no summation), and that the symmetric tensor Uij obeys
also two sets of constraints:∑

i

Uij = 0,

and

Uii =
1
2
Zii

(no summation).
After all this, we are enabled to count the number of

independent components possessed by each of the one-
forms Xi, Zij , Vij , and Uij . The dimension of the vector
Xi is N and the dimension of the symmetric tensor Zij is
(1/2N)(N + 1). Analogously, after taking the constraint
equations into account, the dimension of the second rank
tensor Vij is N2 − 2N and the dimension of the other

symmetric tensor Uij is (1/2)N(N + 1) − 2N . The sum
of these four numbers is 2N(N − 1), which as expected
coincides with the dimension of the space SO(2N)/U(1)N .

As a result, (mi, Xi, Zij , Vij , Uij) yields a complete set
of basis states for the SO(2N) Lie algebra, and can be
used to decompose generic SO(2N) connections. To com-
plete the decomposition, we need appropriate dual vari-
ables that appear as coefficients. We observe that the
Yang–Mills connection A in (10) is an SO(2N) Lie-algebra
valued one-form and transforms in the scalar representa-
tion of the SO(N) group. Accordingly, the variables that
are dual to the one-forms (Xi, Zij , Vij , Uij) are undoubt-
edly zero-forms. Let us denote them by (φi, ψij , σij , ρij),
respectively. These dual variables must transform in the
same SO(N) representations as the associated one-forms
in order to form invariant combinations1.

We therefore conclude that the following decomposi-
tion of the four-dimensional SO(2N) connection contains
the correct number of independent variables, which are
appropriate for describing the theory in the low-energy
limit,

A = Cimi+φiXi+
(
δij + ψij

)
Zij +σijVij +ρijUij . (17)

According to the discussion of the appendix, (17) can also
be expressed in a gauge equivalent form

Ã =
(
Ci − 1

i
R2i−1,2i

)
H2i−1,2i + φixi + ψijzij

+σijvij + ρijuij , (18)

where

(xi, zij , vij , uij) = g−1 (Xi, Zij , Vij , Uij) g.

The Wilsonian renormalization group argument sug-
gests that, in terms of the field variables of the decom-
posed connection (17), the infrared SO(2N) Yang–Mills
theory takes the form

S(mi) =
∫

d4x

[
(∂µmi)

2 +
1
e2
i

([∂µmi, ∂νmi])
2
]
. (19)

The action (19) is in the same universality class as that ob-
tained in [6] and is expected to describe stable, soliton-like
configurations with nontrivial topological numbers, since

π3(SO(4)/U(1)2) = Z + Z

and

π3(SO(2N)/U(1)N ) = Z

for N ≥ 3. It is interesting to investigate the detailed
structures of the action.

In conclusion, we briefly summarize how the method of
Abelian decomposition generalizes for SO(2N +1) Yang–
Mills connection. The SO(2N + 1) Lie algebra is rank

1 The U(1) connection one-forms Ci in (11) are the dual
variables to the zero-forms mi. Thus, the SO(N) group acts
on the combination Cimi trivially
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N and has N(2N + 1) generators. As usual, we denote
the generators by Ta,b for a, b = 1 to N + 1. The N Lie-
algebra valued vector fields mi are constructed similar to
(4) except that they depend on 2N2 independent vari-
ables. The SO(2N + 1) connection one-form can still be
parameterized by (11), but the dimension of the space of
the (covariant part) is 2N2. Needless to say, the (covariant
part) space is identical to the space SO(2N + 1)/U(1)N .
The set of Lie-algebra one-forms which determine the lo-
cal basis of the space SO(2N + 1)/U(1)N , is found to be
(Xi, Zij , Vij , Uij). At this time, the one-forms Vij fulfill
one set of constraints instead of two. It is

Vii = 0

(no summation). As regards the one-forms Uij , the set of
constraint satisfied by them is

Uii =
1
2
Zii

(no summation). It turns out that the number of indepen-
dent variables carried by the set of one-forms (Xi, Zij , Vij ,
Uij) is 2N2, matching the dimension of the (covariant
part) space. Therefore, the expression (17) for the connec-
tion one-form is perfectly applicable to the decomposition
of SO(2N + 1) Yang–Mills theory.
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Appendix

We explicitly give the Lie-algebra valued one-forms Xi,
Zij , Vij , and Uij , expanded in terms of the generators Ta,b,
(1). In (17), these one-forms are used to parameterize the
local basis of the orbit SO(2N)/U(1)N .

To begin with, we introduce the Maurer–Cartan one-
forms

L = dgg−1 and R = g−1dg, (20)

then use (4) and (20) to rewrite

dmi = [L,mi] = g [R,H2i−1,2i] g−1, (21)

[dmi,mi] = g
(
R − R2i−1,2iH2i−1,2i

)
g−1

= L − g
(
R2i−1,2iH2i−1,2i

)
g−1. (22)

Because the (covariant part) of (11) transforms covari-
antly under gauge transformation, we further represent
the connection one-form (11) in the form of a manifestly
gauge equivalent expression:

A = g

[(
Ci − 1

i
R2i−1,2i

)
H2i−1,2i + (c.p.)

]
g−1

+
1
i
dgg−1, (23)

where

(c.p.) = g−1(covariant part)g.

Similar to what we have shown on the local basis of the
(covariant part) space in (11), the space of (c.p.) in (23) is
likewise spanned by four Lie-algebra one-forms (xi, zij , vij ,
uij). They are related to the one-forms (Xi, Zij , Vij , Uij)
of the (covariant part) as follows.

The SO(N) vector one-form xi is defined by

xi = g−1Xig,

with
xi =

1√
2

(
R2i,aT2i−1,a − R2i−1,aT2i,a

)
. (24)

Similarly, after introducing the set of identities

(zij , vij , uij) = g−1 (Zij , Vij , Uij) g,

we have

zij =
1
2i
[δij

(
R2i,aT2j,a +R2i−1,aT2j−1,a

)
+ R2i,2j−1T2i−1,2j +R2i−1,2jT2i,2j−1

− R2i,2jT2i−1,2j−1 − R2i−1,2j−1T2i,2j ], (25)

vij =
1

2
√
2
[R2i,2jT2i,2j−1 +R2i−1,2jT2i−1,2j−1

− R2i,2j−1T2i,2j − R2i−1,2j−1T2i−1,2j ], (26)

uij =
1
4i
[δij

(
R2i,aT2j,a +R2i−1,aT2j−1,a

)
− R2i,2jT2i,2j − R2i,2j−1T2i,2j−1 − R2i−1,2jT2i−1,2j

− R2i−1,2j−1T2i−1,2j−1]. (27)

It is apparent from (26) and (27) that not all the com-
ponents of vij and uij are independent. The rank-two ten-
sor vij (26) satisfies

∑
i

vij =
1
2
xj , (28)

vii = 0 (29)

(no summation). In the same vein, in (27) we find two sets
of constraints fulfilled by uij ,

∑
i

uij = 0, (30)

uii =
1
2
zii (31)

(no summation).
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